Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Zurina Shaameri, Ning Shan* and William Jones

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK

Correspondence e-mail: ns261@cam.ac.uk

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Disorder in main residue
R factor $=0.064$
$w R$ factor $=0.211$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Diphenic acid-acridine (1/1)

The structure of the title complex, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \cdot \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}$, which was cocrystallized from an ethanol solution containing a $1: 1$ mixture of diphenic acid and acridine, has been determined. Hydrogen bonding exists between acid-acid and acid-base as well as acridine $\pi-\pi$ interactions. Proton transfer occurs in one of the two carboxylic acid-aromatic nitrogen interactions.

Comment

Diphenic acid (biphenyl-2, 2^{\prime}-dicarboxylic acid) forms infinite zigzag acid chains via $R_{2}{ }^{2}(8)$ carboxylic acid pairs (Fronczek et al., 1987). It is of interest since it is potentially a good building block in crystal engineering with organic bases. To date, no organic co-crystal structure involving diphenic acid exists in the Cambridge Structural Database (ConQuest; CCDC 2001). We report here the first diphenic acid cocrystal structure with acridine as the base, (I).

The asymmetric unit of complex (I) comprises two acid and two base molecules (Fig. 1). The biphenyl units of the two acid molecules adopt twisted conformations, with the least-squares planes through the two phenyl units forming angles of 72 and 89°. A two-acid-two-base unit exists (Fig. 2), involving an $\mathrm{O} 1-\mathrm{H} 01 \cdots \mathrm{O} 4$ intramolecular hydrogen bond, an $\mathrm{O} 7-$ H03 . .O3 acid-acid interaction and several acid-base intermolecular interactions (Table 2). In one of the two pairs of acid-base contacts, proton transfer occurs from the carboxylic acid group $\mathrm{O} 3-\mathrm{C} 14-\mathrm{O} 4$ to aromatic N 2 , evidenced by the $\mathrm{O} 3-\mathrm{C} 14$ and $\mathrm{O} 4-\mathrm{C} 14$ bond distances (Table 1). H02, the proton involved in the other acid-base contact (located from a difference map) remains within the carboxylic group attached to O5. The O6 site was refined with disorder over two distinct positions ($\mathrm{O} 6 A$ and $\mathrm{O} 6 B$) with equal occupancy; possible weak hydrogen bonds $\mathrm{C} 40-\mathrm{H} 40 \cdots \mathrm{O} 6 A$ and $\mathrm{C} 40-$ $\mathrm{H} 40 \cdots \mathrm{O} 6 B$ are noted. An infinite supramolecular unit is formed along the a axis by packing the two-acid-two-base units via $\pi-\pi$ interactions between acridine molecules. Acridine molecular planes are approximately perpendicular to the a axis, with a distance of approximately $3.5 \AA$ between adjacent planes (Fig. 2). The infinite supramolecular units assemble via close packing (Fig. 3).

Received 21 September 2001
Accepted 1 October 2001
Online 20 October 2001

Figure 1
The asymmetric unit of (I) showing displacement ellipsoids at the 30% probability level. H atoms bonded to carbon have been omitted for clarity (Sheldrick, 1993).

Experimental

Diphenic acid and acridine were obtained from Aldrich. 28 mg of the acid and 18 mg of the base were dissolved in 15 ml of ethanol. Crystals were obtained by slow evaporation of the ethanol solution at room temperature.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \cdot \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N} \cdot \mathrm{C}_{13}-$
$\mathrm{H}_{10} \mathrm{~N}^{+}$
$M_{r}=842.86$
Monoclinic, $P 2_{1} / c$
$a=14.461(3) \AA$
$b=15.863(3) \AA$
$c=19.166(3) \AA$
$\beta=108.98(2)^{\circ}$
$V=4157.5(13) \AA^{\circ}$
$Z=4$
$D_{x}=1.347 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=8.0-15.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: none 7509 measured reflections 7275 independent reflections 3160 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.211$
$S=1.01$
7275 reflections
598 parameters

Figure 2
Projection of the molecular packing of (I) on to the (010) plane, showing the acridine molecules stacked along the a axis. (Watkin et al., 1996).

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

O1-C13	$1.325(6)$	O5-C27	$1.287(6)$
O2-C13	$1.205(6)$	O6 $A-\mathrm{C} 27$	$1.297(12)$
O3-C14	$1.265(5)$	O6B-C27	$1.223(11)$
O4-C14	$1.246(5)$	C28-O8	$1.199(6)$
O7-C28	$1.308(6)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 01 \cdots \mathrm{O} 4$	0.84	1.74	2.578 (6)	178
O7-H03 . ${ }^{\text {O }} 3$	0.85	1.75	2.596 (5)	173
$\mathrm{O} 5-\mathrm{H} 02 \cdots \mathrm{~N} 1^{\text {i }}$	0.84	1.86	2.675 (5)	162
$\mathrm{C} 40-\mathrm{H} 40 \cdots \mathrm{O} 6 A^{\text {ii }}$	0.93	2.39	3.258 (14)	155
$\mathrm{C} 40-\mathrm{H} 40 \cdots \mathrm{O} 6 B^{\text {ii }}$	0.93	2.57	3.282 (12)	133
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3^{\text {iii }}$	0.86	1.88	2.734 (5)	177

Figure 3
Projection on to (100), showing the packing of the infinite supramolecular unit. (Watkin et al., 1996).

Owing to large anisotropic displacement parameters, atom O6 was refined over two distinct positions with equal fixed occupation factors (from refinement).

All H atoms bonded to C atoms were placed geometrically and refined using a riding model with the $U_{\text {iso }}$ values for each H atom taken as $1.2 U_{\text {eq }}$ of the carrier atom. The O-bound H01, H02 and H03 were located from difference Fourier maps and were included in the model with the $\mathrm{O}-\mathrm{H}$ distance restrained to $0.82 \pm 0.02 \AA$. Atom H2 was located from the difference Fourier map and was refined using a riding model with the $U_{\text {iso }}$ value taken as $1.2 U_{\text {eq }}$ of N 2 .

Data collection: CAD-4 Software (Enraf-Nonius, 1988); cell refinement: CAD-4 Software (SETANG); data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1993); software used to prepare material for publication: SHELXL97).

We thank the DWEF Cambridge Scholarship and ORS Award for funding (NS).

References

CCDC. (2001). ConQuest. Version 1.2. CCDC, Cambridge, UK.
Enraf-Nonius (1988). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fronczek, F. R., Davis, S. T., Gehrig, L. M. B. \& Gandour, R. D. (1987). Acta Cryst. C43, 1615-1618.
Molecular Structure Corporation (1995). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, UK.

